Latex是数学公式的必备工具。
根据Katex 文档,将常用的整理如下:
输入 | 结果 |
---|---|
\times \div \% \& \dot x | \(\times \div \% \& \dot x\) |
\cdot | \(\cdot\) |
a’ | \(a'\) |
a’’ | \(a''\) |
\mathring{U} | \(\mathring{U}\) |
\bar{y} | \(\bar{y}\) |
\vec{F} | \(\vec{F}\) |
\overline{AB} | \(\overline{AB}\) |
\not = | \(\not =\) |
\approx | \(\approx\) |
\angle | \(\angle\) |
x_n | \(x_n\) |
e^x | \(e^x\) |
a \atop b | \(a \atop b\) |
\sqrt{\smash[b]{y}} | \(\sqrt{\smash[b]{y}}\) |
\sum | \(\sum\) |
\int \iint | \(\int \iint\) |
\pm | \(\pm\) |
\sqrt[3]{x} | \(\sqrt[3]{x}\) |
\frac{a}{b} | \(\frac{a}{b}\) |
{a \over b} | \({a \over b}\) |
\dfrac{a}{b} | \(\dfrac{a}{b}\) |
\binom{n}{k} | \(\binom{n}{k}\) |
\in \notin | \(\in \notin\) |
\subset \subseteq | \(\subset \subseteq\) |
\forall \land \lor | \(\forall \land \lor\) |
\because | \(\because\) |
\therefore | \(\therefore\) |
\exists | \(\exists\) |
\ge \geq \lt \gt | \(\ge \geq \lt \gt\) |
\leqslant | \(\leqslant\) |
\to \gets | \(\to \gets\) |
\partial \checkmark \clubsuit \spadesuit \heartsuit \diamondsuit | \(\partial \checkmark \clubsuit \spadesuit \heartsuit \diamondsuit\) |
Gamma \Delta | \(\Gamma \Delta\) |
\alpha \beta \gamma \delta | \(\alpha \beta \gamma \delta\) |
\Theta | \(\Theta\) |
\epsilon \zeta \eta \theta | \(\epsilon \zeta \eta \theta\) |
\Lambda | \(\Lambda\) |
\iota \kappa \lambda \mu | \(\iota \kappa \lambda \mu\) |
\Xi \Pi | \(\Xi \Pi\) |
\nu \xi \omicron \pi | \(\nu \xi \omicron \pi\) |
\Sigma \Upsilon | \(\Sigma \Upsilon\) |
\rho \sigma \tau \upsilon | \(\rho \sigma \tau \upsilon\) |
\Phi \Psi \Omega | \(\Phi \Psi \Omega\) |
\phi \chi \psi \omega | \(\phi \chi \psi \omega\) |
\infty | \(\infty\) |
\mathcal{AaBb123} \mathsf{AaBb123} \mathtt{AaBb123} | \(\mathcal{AaBb123} \mathsf{AaBb123} \mathtt{AaBb123}\) |
\overbrace{x+⋯+x}^{n\text{ times}} | \(\overbrace{x+⋯+x}^{n\text{ times}}\) |
\overrightarrow{AB} | \(\overrightarrow{AB}\) |
\displaystyle\sum_0^n | \(\displaystyle\sum_0^n\) |
P\left(A\middle\vert B\right) | \(P\left(A\middle\vert B\right)\) |
矩阵:
\begin{matrix}
a & b \\
c & d
\end{matrix}
矩阵
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
算式
\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}
连续相加等式
x_1 + \dots + x_n
连续相乘
x_1 x_2 \dotsm x_n
求和
\sum_{1\le i\le n} x_{i}